\( \newcommand{\water}{{\rm H_{2}O}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\E}{\mathbb{E}} \newcommand{\d}{\mathop{}\!\mathrm{d}} \newcommand{\grad}{\nabla} \newcommand{\T}{^\text{T}} \newcommand{\mathbbone}{\unicode{x1D7D9}} \renewcommand{\:}{\enspace} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator{\Tr}{Tr} \newcommand{\norm}[1]{\lVert #1\rVert} \newcommand{\KL}[2]{ \text{KL}\left(\left.\rule{0pt}{10pt} #1 \; \right\| \; #2 \right) } \newcommand{\slashfrac}[2]{\left.#1\middle/#2\right.} \)

Measurable function: Events in the target sigma algebra correspond to events in the origin sigma algebra

Let \(\; (\Omega, \mathcal{F}, P) \;\) be a probability space ("origin"), let \(\; (E, \mathcal{E}) \;\) be a measurable space ("target") and let \(\; X: \Omega \to E \;\) be a function.

We say that \(\; X \;\) is \(\; {\color{green} \textrm{measurable}} \;\) if, for every subset \(\; B \in \mathcal{E} \;\), its preimage \(\; X^{-1}(B) = \{ \omega \in \Omega:\; X(\omega) \in B \} \;\) is in \(\; \mathcal{F} \;\).

This correspondence between events in the target sigma algebra \(\; \mathcal{E} \;\) and events in the origin sigma algebra \(\; \mathcal{F} \;\) allows us to measure target events by applying the origin measure \(\; P \;\).